Efeito do recozimento por micro-ondas sobre eletrodeposito de níquel sobre aço e aço inoxidável

Sabrina Julian De Oliveira, Yanka dos Reis Soares De Moura, Carolina Campos Lopes, Ricardo Luiz Perez Teixeira

Resumo


Este trabalho de iniciação científica tem como objetivo estudar comparativamente a influência do recozimento em forno micro-ondas no eletrodeposito (revestimento) de níquel Watts em dois aços diferentes, o aço inoxidável AISI tipo 304 e o aço carbono AISI tipo 1020. O recozimento dos aços no forno de micro-ondas foi realizado a 500°C, durante o período de 1 hora, visando a se melhorar a homogeneidade e promover uma melhor aderência do revestimento de níquel Watts sobre os aços.

Palavras-chave


microdureza Vickers; recozimento; forno de micro-ondas; polarização anódica; corrosão

Texto completo:

PDF

Referências


ASTM E384-11, Standard Test Method for Knoop and Vickers Hardness of Materials, ASTM International, West Conshohocken, PA, 2011.

ASTM E384-17, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA, 2017.

BANSAL, Amit et al. Investigation on microstructure and mechanical properties of the dissimilar weld between mild steel and stainless steel-316 formed using microwave energy. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, v. 230, n. 3, p. 439-448, 2016.

BARKER, Des; WALSH, Frank C. Applications of Faraday's laws of electrolysis in metal finishing. Transactions of the IMF, v. 69, n. 4, p. 158-162, 1991.

BATRA, I. S. et al. Diffusion bonding of a Cu–Cr–Zr alloy to stainless steel and tungsten using nickel as an interlayer. Materials Science and Engineering: A, v. 369, n. 1-2, p. 119-123, 2004.

CHANG, Tso-Fu Mark et al. Bright nickel film deposited by supercritical carbon dioxide emulsion using additive-free Watts bath. Electrochimica Acta, v. 55, n. 22, p. 6469-6475, 2010.

DENNIS, John Keith; SUCH, Tony Eugene. Nickel and chromium plating. Elsevier, 1993.

Dibari, G. A. Nickel plating. Metal Finishing. v. 98, n. 1, p. 270-288, 2000.

ENOS, David G.; SCRIBNER, Louie L. The potentiodynamic polarization scan. Solartron Instruments, Hampshire, UK, Technical Report, n. 33, 1997.

FRATARI, R. Q.; ROBIN, A. Production and characterization of electrolytic nickel–niobium composite coatings. Surface and Coatings Technology, v. 200, n. 12-13, p. 4082-4090, 2006.

GAMIT, Dhirendra; MISHRA, Radha Raman; SHARMA, Apurbba Kumar. Joining of mild steel pipes using microwave hybrid heating at 2.45 GHz and joint characterization. Journal of Manufacturing Processes, v. 27, p. 158-168, 2017.

GENTIL, Vicente. Corrosão. 4ºed. Rio de Janeiro: Editora LTC,, 2011.

KAJIYAMA, Yuko et al. Analysis of influence of snow melting agents and soil components on corrosion of decorative chrome plating. SAE International Journal of Materials and Manufacturing, v. 9, n. 3, p. 819-826, 2016.

KREYSA, Gerhard; SCHÜTZE, Michael. Corrosion handbook. Wiley-VCH, v. 5, p. III, 2006.

LIU, Meihua et al. Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel. Surface and Coatings Technology, v. 286, p. 285-292, 2016.

LIU, Meihua et al. Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel. Surface and Coatings Technology, v. 286, p. 285-292, 2016..

MIMANI, T.; MAYANNA, S. M.; MUNICHANDRAIAH, N. Influence of additives on the electrodeposition of nickel from a Watts bath: a cyclic voltammetric study. Journal of applied electrochemistry, v. 23, n. 4, p. 339-345, 1993.

NUNES, I. P. et al.. Effect of Nickel-Niobium Coating on Fatigue Resistance of SAE 1020 Carbon Steel. International Journal of Engineering Research & Technology, v. V6, p. 397-401, 2017.

OGHBAEI, Morteza; MIRZAEE, Omid. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of alloys and compounds, v. 494, n. 1-2, p. 175-189, 2010.

PAUNOVIC, Milan; SCHLESINGER, Mordechay. Fundamentals of electrochemical deposition. New York, 1998..

ROFAGHA, R. et al. The corrosion behaviour of nanocrystalline nickel. Scripta metallurgica et materialia, v. 25, n. 12, p. 2867-2872, 1991.

RUSU, D. E. et al. Corrosion tests of nickel coatings prepared from a Watts-type bath. Journal of Coatings Technology and Research, v. 9, n. 1, p. 87-95, 2012.

SABETGHADAM, H.; HANZAKI, A. Zarei; ARAEE, A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer. Materials Characterization, v. 61, n. 6, p. 626-634, 2010.

SAITOU, K. Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders. Scripta Materialia, v. 54, n. 5, p. 875-879, 2006.

SARABY-REINTJES, A.; FLEISCHMANN, M. Kinetics of electrodeposition of nickel from watts baths. Electrochimica Acta, v. 29, n. 4, p. 557-566, 1984.

SONI, Pawan et al. Joining of SS316-SS316 through microwave hybrid heating by using Nickel nano-powder. International Journal of Applied Engineering Research, v. 13, n. 8, p. 6446-6449, 2018.

TUCK, J. R. et al. Modelling of the hardness of electroplated nickel coatings on copper substrates. Surface and Coatings Technology, v. 127, n. 1, p. 1-8, 2000.

XIANG, Tengfei et al. Effect of current density on wettability and corrosion resistance of superhydrophobic nickel coating deposited on low carbon steel. Materials & Design, v. 114, p. 65-72, 2017.


Apontamentos

  • Não há apontamentos.


 

 

 

Revista Brasileira de Iniciação Científica, Itapetininga, SP, Brasil, ISSN: 2359-232X

 Licença Creative Commons Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.